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Abstract We used photographic mark-recapture methods

to estimate the number of mammal-eating ‘‘transient’’

killer whales using the coastal waters from the central Gulf

of Alaska to the central Aleutian Islands, around breeding

rookeries of endangered Steller sea lions. We identified 154

individual killer whales from 6,489 photographs collected

between July 2001 and August 2003. A Bayesian mixture

model estimated seven distinct clusters (95% probability

interval = 7–10) of individuals that were differentially

covered by 14 boat-based surveys exhibiting varying

degrees of association in space and time. Markov Chain

Monte Carlo methods were used to sample identification

probabilities across the distribution of clusters to estimate a

total of 345 identified and undetected whales (95% prob-

ability interval = 255–487). Estimates of covariance

between surveys, in terms of their coverage of these clus-

ters, indicated spatial population structure and seasonal

movements from these near-shore waters, suggesting spa-

tial and temporal variation in the predation pressure on

coastal marine mammals.

Introduction

There is growing interest in the ecosystem role of apex

predators, particularly in their ability to effect top–down

forcing on ecosystem dynamics through predation (Pace

et al. 1999). Killer whales (Orcinus orca) are a top marine

predator, with a worldwide distribution (Dahlheim and

Heyning 1999). In the far North Pacific waters of the

western Gulf of Alaska, Aleutian Islands and Bering Sea,

predation by killer whales has recently been suggested as a

possible cause for the declines in abundance of several

marine mammal species, notably endangered Steller sea

lions (Eumetopias jubatus) and sea otters (Enhydra lutris)

(Estes et al. 1998; Springer et al. 2003; Williams et al.

2004). Although there is considerable disagreement over

the evidence supporting this hypothesis (Demaster et al.

2006; Mizroch and Rice 2006; Trites et al. 2007; Wade

et al. 2007; Springer et al. 2008; Estes et al. 2009), this

debate has highlighted the need for additional empirical

data and robust inference on the role of killer whales as

predators within these marine ecosystems.

Killer whales in the North Pacific have been categorized

into sympatric lineages that display differences in genetic

composition (Stevens et al. 1989; Hoelzel and Dover 1990;
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Hoelzel et al. 1998, 2002; Barrett-Lennard 2000), mor-

phology (Baird and Stacey 1988; Ford et al. 2000),

vocalizations (Ford 1989; Barrett-Lennard et al. 1996;

Deecke et al. 2005) and social structure (Bigg et al. 1990;

Baird and Whitehead 2000; Parsons et al. 2009). These

lineages function as separate ecotypes and exhibit distinct

prey specializations, with ‘‘residents’’ and ‘‘offshores’’

feeding on fish, and ‘‘transients’’ on marine mammals

(Ford et al. 1998; Saulitis et al. 2000; Herman et al. 2005;

Krahn et al. 2007). Owing to these prey preferences, the

different killer whale ecotypes will have differing roles in

the dynamics of marine ecosystems. However, useful

inference about ecosystem dynamics has been constrained

by the absence of precise abundance estimates for killer

whales (Guenette et al. 2006).

Killer whales can be individually recognized from nat-

ural markings, and in several areas of the northeast Pacific

accessible populations of residents have been enumerated

in long-term photo-identification censuses since the early

1970s, using individual variability in the shape of the

dorsal fin, pigmentation of the adjacent saddle patch and

naturally acquired scarring (Dahlheim et al. 1997; Matkin

et al. 1999; Ford et al. 2000). Photo-identification catalogs

have also been compiled for the transients using similar

markings (Black et al. 1997; Dahlheim et al. 1997; Ford

and Ellis 1999; Matkin et al. 1999) but the difficulties of

encountering transients on a regular basis have prevented

precise counts of abundance during any given time interval.

Furthermore, although killer whales have been relatively

well documented for the coastal waters of the northeast

Pacific, relatively few data exist for the more remote waters

of the far North Pacific, requiring a sampling approach to

abundance estimation (Zerbini et al. 2007).

Mark-recapture is a well-developed sampling method

for estimating the size of wildlife populations (Chao 2001),

and photographic mark-recapture methods have been used

to estimate the abundance of a number of populations of

whales and dolphins (Wilson et al. 1999; Stevick et al.

2003; Calambokidis and Barlow 2004; Durban et al. 2005).

In the traditional ecological framework, the researcher

controls the capture mechanism and thus the individual

probability of being caught (Otis et al. 1978; Seber 1982).

However, when working with cetaceans in remote marine

environments, which are costly and difficult to survey, the

design is generally more observational. Surveys may be

setup for various purposes, and the researcher cannot easily

control the probability of inclusion in a photo-identification

sample. Additionally, cetacean populations tend to be

structured by complex social organization, with heteroge-

neous ranging patterns between individuals (Lusseau et al.

2006). Therefore, depending on their spatial and temporal

arrangement, the survey samples tend to cover different

subsets of the population, with some overlap (Durban et al.

2005). Killer whales present a special case of heterogeneity

because they typically travel in matrilineal groups that can

remain stable in composition for long periods of time, on

the scale of years for transients (Baird and Whitehead

2000) to generations for residents (Parsons et al. 2009).

Therefore, heterogeneity is likely to be represented by

groups of whales, each with different capture (or in this

case ‘‘identification’’) probabilities by different surveys.

This clearly complicates the relationship between recapture

rate and abundance, and has the potential to produce biased

estimates of abundance using conventional mark-recapture

models (Carothers 1973a, b; Otis et al. 1978).

In this study we tailored mark-recapture models to fit the

key interactions between clustered capture probabilities

and non-random surveys to estimate the abundance of

mammal-eating killer whales using the coastal waters from

the central Gulf of Alaska to the central Aleutian Islands

around the breeding rookeries of the endangered western

stock of Steller sea lions (Loughlin et al. 1992). Our esti-

mate was based on photo-identification samples that uti-

lized natural markings to identify individual killer whales,

and we applied mark-recapture models to these data to

estimate the number of individuals that remained unde-

tected. Model fitting was accomplished using Markov

chain Monte Carlo (MCMC) sampling within a Bayesian

statistical framework (e.g. Durban and Elston 2005),

allowing inference to be based on full probability distri-

bution for population size that effectively communicated

both the extent and shape of the uncertainty (e.g., Wade

2000; Durban and Elston 2005).

Methods

Survey data

Photo-identification data were collected within an area of

approximately 220,000 km2 of the near-shore waters of the

Aleutian Islands and western Gulf of Alaska (Fig. 1). This

area was designed to cover much of the known haul-out

range of the endangered western stock of Steller sea lions

in US waters (Loughlin et al. 1992) from the Kenai Pen-

insula in the east (* 60�N, 150�W) to Amchitka Pass in

the central Aleutians (*52�N, 178�W). In summer, Steller

sea lions are thought to primarily forage in relatively close

proximity to their rookeries and haulouts (Merrick and

Loughlin 1997) and therefore our surveys covered the area

within 60 km of land. Photo-identification surveys were

conducted over a 26-month period between July 2001 and

August 2003, with survey effort confined to the summer

months between May and August in each year. Our

abundance estimates correspond to the number of whales

that used this study area during these times, and we make
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no explicit assumption as to how this estimate relates to the

total population to which these animals belong. Also, it is

not assumed that all of these individuals were present in the

area for the entire survey period.

Photo-identification data were obtained from 14 different

surveys (Table 1), differing in their spatial and temporal

coverage within the survey area. The widest geographic

coverage was obtained during three line-transect surveys

(01LT, 02LT, 03LT), one each summer (Zerbini et al.

2007), which defined the extent of the overall survey area.

These were dedicated surveys to assess killer whale distri-

bution and abundance, and employed large ships to sample

the entire study area following track-lines that were ran-

domly placed in a saw-tooth pattern. The ship diverted from

the track-line to photograph any killer whale groups that

were sighted. To ensure equal area coverage for the line-

transect methodology, the survey area was stratified into 16

strata (Fig. 1), which are useful here for describing the

spatial coverage of the other surveys (Table 1).

Dedicated killer whale surveys were also conducted as

part of focused research efforts in two near-shore areas:

one in the eastern Aleutian Islands (strata 10, 11 and 12),

and one in the western Gulf of Alaska between the Kenai

Fjords and Kodiak (strata 1, 2 and 3). Surveys in each year

(01EA, 02EA, 03EA, 03FP in the eastern Aleutians; 01KK,

02KK, 03KK in the Kenai/Kodiak region) were conducted

using chartered fishing vessels (Matkin et al. 2007). Daily

or multiday research trips were repeatedly conducted over

several weeks in each summer, and survey effort was tar-

geted in areas that killer whales were known or expected to

use. Killer whale photographs were also collected on an

opportunistic basis from other oceanographic and biologi-

cal research platforms that were operating in the study area

in the summer of 2002: 02AH (Sinclair et al. 2005), 02MF

(Waite et al. 2002); 02MA (LeDuc 2004); and 02TX (Sease

and Gudmundson 2002) (Table 1).

On all surveys, killer whale identification photographs

were taken using 35-mm SLR cameras equipped with Fuji

Neopan 1600 black and white film, or with digital SLR

cameras shooting high resolution images. To standardize

data collection, only the left side of each whale was pho-

tographed, specifically the dorsal fin and adjacent saddle

patch that are individually distinctive (Fig. 2), and all the

individuals in each group were photographed when

possible.

Mark-recapture samples

The focus of this study was to estimate the abundance of

transient killer whales. However, most of the killer whale

groups encountered within this study area were of the

resident lineage (Zerbini et al. 2007). We therefore needed

to identify groups of transients before using data from only

these groups in the subsequent analyses. Identification to

lineage was based on a combination of molecular genetic

analysis of biopsy samples collected during the surveys and

assessments of morphology based on examination of the

photographic data collected from each group of whales

(Matkin et al. 2007; Zerbini et al. 2007). The photographic

assessments were conducted independently by two of the

Fig. 1 Map of the study area,

defined by rectangular strata

(light shading, numbered 1–16)

covering the coastal waters of

the Gulf of Alaska and Aleutian

Islands. Each data point (sold
circle) represents the location of

a single encounter with a group

of mammal-eating ‘‘transient’’

killer whales
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Table 1 Summary data for each of the 14 surveys from which photo-identification data were collected

Survey Strata with encounters # Encounters # Photographs Images Individuals

Total Q2 Q3 Q4 Primary marks Secondary marks

01LT 2, 9, 10, 11, 12, 14 7 779 928 3 62 127 8 7

01KK 1 5 78 101 1 22 22 3 3

01EA 11 1 48 54 3 12 24 1 2

02AH 11, 12 4 305 404 7 77 67 17 7

02LT 12, 14 3 370 489 7 95 68 8 7

02MA 3, 11, 12 3 52 57 1 6 1 2 0

02MF 11 1 52 95 0 5 2 5 0

02KK 1 8 430 592 15 112 94 6 2

02EA 11, 12 4 368 544 13 104 184 8 8

02TX 11 1 57 113 4 11 20 4 4

03FP 10, 12 11 1,503 1,928 43 442 471 38 21

03LT 10, 11, 12, 16 4 307 436 5 129 62 11 2

03KK 1 7 189 252 3 47 43 5 4

03EA 11 4 394 496 5 99 217 13 7

Total 1, 2, 3, 9, 10, 11, 12, 14, 16 63 4,932 6,489 110 1,223 1,402 129 74

The strata with encounters are spatially referenced in Fig. 1. Only high-quality images were used, where Q2 indicated a usable image of the

saddle region only, Q3 indicated a usable fin only and Q4 indicated both the fin and saddle in useable quality. Primary marks consisted of notches

in the dorsal fin that could be used alone to uniquely identify individuals. Secondary markings included oval scars, saddle patch pigmentation

patterns, linear scars on the saddle patch and variation in dorsal fin shape, and were used in combination to identify individuals if primary marks

did not exist

Fig. 2 Photographs showing

examples of natural markings

used to identify individual killer

whales. Notches in the dorsal fin

(a) were considered primary

markings that could be used to

uniquely identify individuals.

Secondary makings such as oval

scars (a, b), saddle patch

pigmentation patterns (c), linear

scars on the saddle patch (c) and

variation in dorsal fin shape (a,

b, c) were used in combination

to identify individuals. Some

individuals were not deemed to

be sufficiently distinctive for

long-term matches (d), but

subtle secondary markings

allowed them to be

distinguished within the group
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authors (JW, MD). Chemical analyses of fatty acids, stable

isotopes and organochlorines from the same biopsy sam-

ples have demonstrated that the animals genetically iden-

tified as transients in this area had chemical signals that

were consistent with a diet of marine mammals (Herman

et al. 2005; Krahn et al. 2007). This dietary specialization

is also supported by direct observations of transients

preying solely on marine mammals in this area (Matkin

et al. 2007).

To minimize erroneous documentation of markings (i.e.

individual identity), all photographic identifications were

subject to a quality grading process. Because identifying

features on both the dorsal fin and saddle patch were used,

this grading scheme reflected the quality of both of these

body parts in the image. Specifically, a grade of 4 indicated

that the both the fin and saddle were displayed in usable

quality; 3 indicated a usable fin only (e.g., animal not

surfacing high enough to display most of the saddle); 2

indicated a usable saddle only (e.g., the dorsal fin was not

framed in the image); and 1 indicated that neither feature

was usable. The utility of the images was assessed based on

a combination of image size, focus, angle and clarity due to

image exposure and was judged by whether it could be

used to document the smallest of distinguishing marks on a

hypothetical individual.

The mark-recapture procedure required natural mark-

ings that were sufficiently distinct to allow for reliable

repeat identifications over time. Therefore, we scored the

markings present on each individual to determine which

were distinctively marked. Specifically, each photograph

was scored for the presence or absence of five key features:

distinctive dorsal fin shape, notches in the dorsal fin, dis-

tinctive saddle pigmentation pattern, scratches on the sad-

dle and oval scars on the saddle (Fig. 2). These marks were

classified as either primary or secondary, relating to their

utility for defining individual distinctiveness. Notches in

the dorsal fin were considered to be a primary mark, as they

have been shown to persist with little changes for many

years in free-ranging killer whales (Ford et al. 2000). The

size, shape and position of notches in the dorsal fin make

them a distinguishing feature that can be reliably docu-

mented even in a wide variety of photographic lighting

conditions. The other mark-types were conservatively

considered to be secondary marks because of uncertainty

over their longevity and because their reliable documen-

tation is conditional on the light quality in the photographic

image. Specifically, many of the photographed whales

possessed oval scars on the saddle patches that are thought

to be caused by cookie-cutter sharks, Isistius sp. (JD and

RP, unpublished data). These are deep scars that will most

likely be visible for at least several years. However, even

though photographs were selected for useable exposure in

the quality grading procedure, the detail of these scars can

be relatively hard to see in low and flat light. Because of

the subjectivity involved, guidance about which whales

possessed distinctive fin and saddle shapes was based on

soliciting independent expert opinion from a number of the

authors who are experienced in viewing killer whales (GE,

DE, MD, JW, JD).

Individuals were defined to be distinctively marked if

they possessed either a minimum of one primary mark or

two secondary marks, and only distinctively marked indi-

viduals were used in the mark-recapture analysis. Each

individual was assigned a unique identification number,

and individual identity was assigned by comparing candi-

date photographs to an updated catalog of unique individ-

uals. However, because repeated photographs of the same

individual varied in photographic quality, the capture his-

tories for each whale were constructed based on a com-

bined query of both the quality grades for each photograph

and the individual distinctiveness scores, to minimize

identification errors. Specifically, an identification was

only considered usable if the one primary or two secondary

distinctive features were documented on a part of whale

(dorsal fin, saddle or both combined) that was graded to be

usable quality.

Mark-recapture models

We constructed a matrix of identification histories XS�n

with elements xij taking the values 1 or 0 to indicate

whether or not each individual j = 1,…,n was identified

during each of the i = 1,…,S = 14 surveys. These binary

data were assumed to constitute the outcome of indepen-

dent Bernoulli trials, conditional on identification proba-

bilities pij. The aim of mark-recapture abundance

estimation was to predict the number of individuals that

remained undetected, using information on the n observed

individuals. This was achieved by augmenting the observed

data matrix to include n0 = N–n rows of zeros corre-

sponding to the unobserved individuals from a total pop-

ulation of size N, with the dimension of n0 being predicted

directly from the model for the observed data by assuming

the same probability model for unobserved individuals pij,

j = n?1…n ? n0, as for observed individuals pij,

j = 1…n (Durban and Elston 2005). Emphasis was there-

fore placed on models to describe the observation process

generating the identification probabilities.

A consequence of our non-uniform and opportunistic

survey effort was that the probability of identification

likely varied between individuals and across sampling

occasions. We assumed the population was demographi-

cally closed over this 2-year period and modeled variability

in identification probability through just two types of main

effect: survey effects and individual effects. These effects

were incorporated into a linear logistic model for the
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identification probability (Pledger 2000) where the most

general model takes the following form:

ln pij

�
1� pij

� �� �
¼ lþ ai þ hj þ kij

where l is an overall constant representing the average

identification probability, ai is the main effect depending

on the survey i, hj is an individual effect and kij represents

the interaction of individuals across surveys. The general

model, labeled Mahk, could be simplified to form a variety

of alternative model forms. If we removed the interaction

term k, this became an additive model where the individual

effects were constrained to vary in a parallel fashion across

surveys (Mah). We could further simplify the model by

removing either or both of the main effects terms to result

in a model depicting only survey (Ma), or individual (Mh)

variability in identification probability, or no systematic

variability around an average identification probability

(M0). The full model and its various submodels are listed in

Table 2.

Hierarchical Bayesian formulation

To ensure parameter identifiability, we adopted a random

effects approach for modeling these parameters by

assuming an underlying common distribution to describe

variability in effects across surveys, individuals and their

interaction (Coull and Agresti 1999; Dorazio and Royle

2003). This random effects formulation was specified

within a Bayesian statistical framework, where the under-

lying common densities were conveniently specified by

prior distributions (Fienberg et al. 1999; Durban and Elston

2005). We modeled the individual effects as clustered

effects by adopting a mixture model for h, where the

underlying density of the effects was approximated by a

mixture of distributions (West 1992). Specifically, h was

assumed from a mixture of C Normal component

distributions:

hj ¼
XC

k¼1

wkN 0; rh
� �

:

The wk were mixture weights, which summed to 1,

indicating the probability of belonging to mixture,

k = 1,…,C. Instead of a separate effect for each

individual, the model therefore specified a separate effect

for clusters (mixtures) of individuals. The mixtures

themselves were defined by hyper-parameters specifying

the mean and standard deviation of the Normal

components. The use of the overall mean l in the

additive logistic model conveniently resulted in centering

of the effects h around zero, and the component means

could therefore be set at zero. We assigned a common

standard deviation hyper-parameter to describe the

variability between the components’ effects rh, but to

allow non-zero effects to emerge rh was assigned a

uniform prior distribution between 0 and 10. Examination

of later results shows that this prior standard deviation was

much greater than the corresponding posterior standard

deviation.

We also modeled the individual by survey interactions

as clustered effects. However, because surveys were typi-

cally not randomly or uniformly placed in space or time,

we also attempted to describe possible dependencies

between the surveys in terms of similarities in the specific

clusters that were covered by each survey. To describe the

association between the 14 surveys, the prior distribution

for k was taken to be a multivariate Normal distribution,

stratified into q = 14 dimensions (Fienberg et al. 1999):

kij ¼
XC

k¼1

wkN14 0;Rð Þ:

This distribution was defined by the covariance matrix R
of the order q*q, where the principal (left to right) diagonal

element of this matrix was the estimate of the variance of

the cluster effects for each of the 14 surveys, and the off-

diagonal values represented covariances between pairs of

surveys. A common covariance matrix was thus specified

across clusters in order to learn about the covariances

between surveys in terms of how they captured the effects

of each cluster. For example, a cluster with high

catchability in survey 1 would have high catchability in

survey 3 if a positive covariance existed. We adopted the

Wishart distribution as the prior for the inverse covariance

matrix R-1 (Fienberg et al. 1999), which is specified in

terms of a scale matrix B and a degrees of freedom

parameter v. We set diagonal values of B = 1 for the prior

variance of the cluster catchability for each survey q, and

the off-diagonals were assigned B = 0 for a prior

Table 2 The estimated mean square predicted error (MSPE) infer-

ring the fit of each model to the photo-identification data, along with

the posterior median (95% probability interval) estimate for the

number of clusters of individuals from the three models with mixture

components, and the abundance of distinctively marked individuals,

N, for all models

Model ln{pij/(1 - pij)} MSPE Clusters N

M0 l 0.17 – 333 (272–426)

Ma l ? ai 0.16 – 315 (257–400)

Mh l ? hj 0.17 1 (1–2) 335 (271–433)

Mah l ? ai ? hj 0.16 1 (1–2) 317 (258–411)

Mahk l ? ai ? hj ? kij 0.05 7 (7–10) 275 (210–372)

The model parameter l is an overall constant representing the average

identification probability, ai is a main effect for each survey i, hj is an

individual effect and kij represents the interaction of individuals

across surveys
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assumption of no covariance between pairs of surveys.

Larger values of v represent stronger belief, and we

therefore adopted a value of v = q = 14 to represent a

vague prior and allow non-negative covariance values to

emerge.

The allocation of individuals to clusters was not known

and we instead took the approach of estimating the number

of non-empty mixtures from a ceiling value by adopting a

Dirichlet process prior (Escobar and West 1995; Dey et al.

1999). For a ceiling of C potential mixtures, a set of C

potential values of hk and kik for k = 1,…C were drawn

from the baseline priors, with the size of the set corre-

sponding to the anticipated maximum number of possible

clusters. The most appropriate values hk and kik for each

individual j were then selected using a Dirichlet vector of

length C, with uniform elements for the mixture weights

wk. Because some of the C clusters may not have been

appropriate for any of the observations (i.e., there may be

empty clusters), the mixture weights wk were chosen by the

‘‘stick-breaking’’ construction (Congdon 2003):

w1 ¼ r1; wk ¼ 1� r1ð Þ 1� r2ð Þ. . . 1� rk�1ð Þ k ¼ 2; . . .C

where r1, r2,…rC-1 are random variables with prior mass

equally spaced between zero and one. Specifically we

assigned r1,..rk with B(1,1) priors, where B(a,b) indicates a

Beta distribution with mean m = a/(a ? b) and variance

v = m (1 - m)/(a ? b ? 1). We set rC = 1 to ensure thatPC
k¼1 wk ¼ 1: This is known as a stick-breaking prior since

at every stage what is left of a stick of unit length is broken,

and the length of the broken portion is assigned to the

current value wk (Dey et al. 1999).

In addition to the clustered individual effects, we also

set prior distributions on the other terms in the model. We

adopted a random effects formulation for the survey effects

a, with a continuous Normal distribution describing the

variability in the degree to which each survey penetrated

into the target population. As with the individual main

effects, the prior distribution for the survey effects was also

centered on zero with standard deviation ra uniformly

distributed between 0 and 10. Additionally, the overall

mean level of capture probability, l, was assigned a vague

Normal prior centered at zero with a large variance

(= 100).

In a Bayesian analysis the prior distributions are upda-

ted, conditional on the observed data, to produce a ‘‘pos-

terior’’ probability distribution (Gelman et al. 1995). We

used computer-intensive MCMC sampling to perform this

updating and estimate a sample from the posterior distri-

bution for each parameter of interest (Durban and Elston

2005). To facilitate MCMC computation in the mixture

models, we introduced indicator variables zj, one for each

individual j = 1,…,n, each indicating which component in

the mixture had generated the effect for each individual

(Neal 2000). These cluster indicators were stochastic and

modeled as latent variables. Conditional on the mixture

weights w, each component of the indicator vector z was

independently drawn from the multinomial distribution

with pr(zj = k) = wk. The indicators therefore took the

values of k = 1…C, such that zj = k indicated that the jth

individual had been drawn from the kth component of the

mixture. With repeated iterations in an MCMC chain, the

average cluster allocation zj attaching to individual j was

taken over the candidate values assigned at each iteration

of the chain, and variability in the sampled values repre-

sented uncertainty about mixture (or cluster) membership.

The cluster indicators zj for the unobserved individuals,

j = n ? 1,…,n0, were drawn from the same Dirichlet

process as the observed individuals. MCMC sampling

across the distribution of candidate clusters therefore had

the effect of smoothing the capture probabilities of

observed individuals, and then using this smoothed distri-

bution to predict the number n0 of unseen individuals.

Variability in n0 was specified through a prior distribution

for N, and the two were linked by the logical relationship

n0 = N–n. A discrete uniform distribution was adopted as

the prior for N, with support over the interval between n

and M. The posterior probabilities of discrete values for n0

and thus N were simply estimated from the relative fre-

quency of different values in the MCMC sample. This

posterior distribution not only indicates the most likely

values, but also allows a crucial assessment of the associ-

ated uncertainty.

Model selection and evaluation

We employed the same MCMC simulation approach to

generate predictive observations to compare the fit of the

competing models using a posterior predictive criterion

(Gelfand and Ghosh 1998). For each model, we predicted a

new set of data (Xnew) of the same dimensions as the

observed data (i in 1,…,S and j in 1,…,n) by generating

samples directly from the posterior distributions of the

fitted model parameters. We then calculated a loss function

that measured the discrepancy between the observed data,

X, and the predicted data, Xnew. As a loss function, we used

the Mean Square Predicted Error (MSPE):

MSPE ¼
XS

i¼1

Xn

j¼1

xnew
ij � xij

h i2

:

As with other model selection methods, the predictive

criterion achieves a compromise between the goodness-of-

fit and a penalty for the number of free parameters in the

model (Gelfand and Ghosh 1998). The model with the

smallest criterion value was estimated to be the model that
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would best predict a replicate dataset of the same structure

as that currently observed. However, the predictive model

selection criterion did not reveal whether the selected

model could have plausibly generated the observed data.

We, therefore, also adopted a posterior predictive approach

for goodness-of-fit checking (Gelman et al. 1996) by

calculating a discrepancy for both the observed data, X, and

the predicted data, Xnew. Specifically, we adopted an

individual-specific discrepancy measure dj (Berkhof et al.

2003) to check whether the capture histories of each

individual j were well fitted by the probability model p

dj Xð Þ ¼
XS

i¼1

xij � pij

����

dnew
j Xnewð Þ ¼

XS

i¼1

xnew
ij � pij

���
��� :

We assessed the magnitude of the discrepancies by

comparing the posterior distributions of each dj
new with the

corresponding dj for each individual j in 1,…,n.

For each model, we used the WinBUGS software (Lunn

et al. 2000) to simulate three simultaneous MCMC

sequences from the posterior distribution for the model

parameters, and the predictive distribution given these

posteriors. We compared three MCMC sequences in order

to identify and discard ‘‘burn-in’’ iterations prior to con-

vergence of the chains (Brooks and Gelman 1998), and

inference was based on 10,000 iterations following the

burn-in. We adopted a ceiling of C = 30 possible clusters

when fitting the mixture models and M = 500 potentially

unobserved individuals, which was notably larger than the

upper bounds for the respective posterior estimates.

Rescaling for non-distinctive individuals

Even with the use of high-quality photographs that allowed

identification of individuals based on subtle markings,

there remained some individuals that were not judged to be

distinctive, even from a best quality (Q = 4) photograph

(Fig. 2). Reliable identification histories over time could

therefore not be constructed for such individuals, so they

were not included in the mark-recapture analysis. How-

ever, it was necessary to have some estimate of the pro-

portion of these individuals in the population to rescale the

mark-recapture estimate upward to account for these non-

distinctive animals.

From high-quality (Q = 4) photographs, all individuals

could be distinguished from the other group members in a

given encounter, based on at least one secondary mark

(Wilson et al. 1999). Therefore, even though some indi-

viduals could not be matched over time, we could produce

an estimate of this non-distinctive proportion of the

population from the average number of individuals with

and without distinctive markings documented from Q = 4

photographs in each encounter. To account for the vari-

ability in this estimated proportion, we incorporated this

mark-type rescaling step into the same Bayesian proba-

bility model as the mark-recapture estimation and used

MCMC to sample jointly across both components. Spe-

cifically, the number of distinctly marked individuals was

treated as a binomial sample from the total individuals

documented from Q = 4 photographs in each encounter,

where the binomial probability represented the proportion

of distinctive individuals (p). A common proportion, p,

was adopted to estimate the average across encounters, and

we adopted a flat Beta(1,1) prior distribution with proba-

bility mass equally spaced between 0 and 1. The mark-

recapture and mark-rescaling components were linked to

form a single probability model, by defining the overall

abundance P to equal N/p and integrating the distribution

to obtain discrete integers of P.

Results

Photo-identification data were collected from 63 encoun-

ters with transient killer whales in 9 of the 16 strata within

this study area (Fig. 1; Table 1). These encounters were

located across the full extent of the study area, but most

were concentrated around the eastern Aleutians Islands

(strata 10, 11 and 12). Assignment to the transient lineage

was corroborated by genetic sequences (Matkin et al. 2007;

Zerbini et al. 2007) from tissue samples directly collected

from 52 (83%) of these encounters, with a further 5

encounters being designated through indirect association of

individuals with directly sampled transient groupings.

There were only six encounters from which these molec-

ular tools could not be used, and determination was based

solely on photographic assessment. The two independent

analysts showed complete agreement in their classification

as ‘‘transients’’ in these six cases and showed consistent

ability to differentiate transient groups from the other

sympatric killer whale lineages (Zerbini et al. 2007). Fur-

thermore, these photographic assignments were always

consistent with genetic determinations for the 57 encoun-

ters with transients where genetic determinations were also

available.

The 14 surveys varied in the quantity of data collected

(Table 1). Targeted surveys (e.g., 03FP) were most effec-

tive at encountering whales, whereas the opportunistic

surveys (e.g., 02MF) often only produced sparse data, and

the dedicated line-transect (LT) surveys were successful in

encountering whales over a wider geographic area. In total,

4932 photographs were obtained, displaying 6,489 identi-

fication images (as there were often images of multiple
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whales identified within a single photographic frame). Just

under half (2,735; 42%) of the images were judged to be of

sufficient quality to attempt individual identifications, and

1,402 (51%) of these were high-quality photographs dis-

playing both the fin and saddle patch.

The number of distinct individuals identified from each

survey also varied widely, reflecting the differences in

encounter rates and photographic effort (Table 1). There

were 203 individual identifications in total, the majority

(129; 64%) from primary markings (notches in the dorsal

fin), with 74 (36%) from a combination of two or more

secondary markings. Although individuals were typically

only identified from a single survey, there was some survey

overlap, with 18, 11 and 3 individuals being identified from

2, 3 and 4 different surveys, respectively. No individuals

were documented on more than four surveys. As a result,

we identified a total of 154 different distinctly marked

individuals. The rate of discovery of new individuals

gradually decreased over the study period as individual

matches between surveys were documented (Fig. 3).

However, this rate did not level off to a stable asymptote,

and there was clearly scope for undetected individuals.

There were significant differences in the fit of the five

models to the observed data (Table 2). Adding clustered

individual effects alone to the base model produced no

improvement in model fit (M0 vs. Mh), and individuals

were assigned to only a single most likely cluster, reflect-

ing little evidence for clustered effects in individual main

effects under this model. Adding survey effects alone did

result in a slightly better fitting model (M0 vs. Ma). This

reflected the widely different coverage provided by each

survey, both in terms of geographic area and the intensity

or duration of survey effort. Incorporating clustered indi-

vidual effects in an additive fashion to survey effects did

not produce any further improvement in model fit (Ma vs.

Mah), as once again the individuals were assigned to only a

single cluster under this model. This demonstrated very

little support for parallel variation in identification proba-

bilities of different individuals over the 14 surveys. How-

ever, the full model (Mahk) incorporating survey effects,

cluster effects, cluster by survey interactions and associa-

tions between surveys clearly predicted the observed data

much more accurately than any of the alternative models,

with less than a third of the predictive error of any of the

other candidate formulations. Therefore, we based further

inference on estimates from this model.

A maximum of 10 different clusters were sampled

during the MCMC run for model Mahk, with a modal (most

probable) value of 7 and 95% probability intervals of 7–10

for the distribution of the number of non-empty clusters. Of

the 154 distinctly marked individuals, 134 (87%) could be

assigned to one of these seven specific clusters with high

probability, with this cluster accounting for at least 95% of

the discrete probability in the estimated posterior distri-

bution for the cluster indicator z, and 152 (99%) could be

assigned to a dominant cluster with pr(zj = k) [ 0.5. This

provided strong evidence for the existence of distinct

groups or subpopulations and demonstrated the utility of

allowing for non-parallel variability in the catchability of

these different clusters by different surveys. In general, the

individual identification histories were well fitted by the

distributions of the corresponding mixture components, as

the summed discrepancy value for the observed data for

any individual was never larger than 3.04 (out of a possible

14 binary identification events) and averaged less than one

(mean = 0.91, SD = 0.87). Furthermore, the difference

between the mean discrepancy value and the mean dis-

crepancy value predicted under the model only averaged

0.18 (SD = 0.20), implying that the data could have been

plausibly generated by the model.

The estimated covariances for the cluster by survey

interaction terms indicated which surveys were positively

or negatively associated in relation to the clusters that they

covered (Table 3). Of the 84 different pair-wise combina-

tions of surveys, 51 (61%) had significant associations

where the 95% probability intervals of the posterior dis-

tribution for the covariance R did not overlap with zero

(no correlation). Of these, 27 (53%) represented negative

associations and 24 positive correlations. The strongest

covariance was negative, with a median estimate of -178

(95% probability interval = -320 to -105) for the asso-

ciation between the 03EA and 03FP surveys. In fact, 7 of

the 13 covariances involving the 03FP survey were sig-

nificant, and all of these were negative. These negative

associations were the result of most of the individuals

identified by the 03FP survey (52 out of a total of 59) not

being documented by any of the other surveys, and
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Fig. 3 Cumulative individuals plotted against cumulative identifica-

tions, with data points (filled squares) presented for each survey in

chronological sequence. The hypothetical 1:1 discovery rate (solid
diagonal) is plotted for reference, and the three calendar years (2001,

2002, 2003) are separated by broken lines
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therefore these 52 individuals were assigned to the same

cluster with at least 95% probability, which represented

the largest cluster estimated by the model. The 03EA

survey was also involved in the strongest positive

covariance (median = 137, 95% probability interval =

53–235) with the 02MF survey. This is not surprising

because both only had encounters in the same stratum

(#11, Fig. 1). These surveys also had strong positive

associations with the 02TX and 03LT surveys that also

had encounters within this stratum, and these patterns

defined a cluster of six individuals with high catchability

across each of these surveys. A further cluster of 14

individuals was comprised of individuals that were also

all identified in 03EA survey, with corresponding high

catchability and positive associations with the 02EA and

02TX surveys.

Interestingly, the focused killer whale surveys in the

Kodiak Island and Kenai Fjords region of the Gulf of

Alaska (01KK, 02KK, 03KK) were involved in 21 (41%)

of the significant associations. These were composed of

positive associations between the three KK surveys, but

negative associations with any of the other surveys with

encounters in the Aleutians Islands. Of the 12 individuals

that were documented in the KK area, none were docu-

mented in any of the surveys elsewhere and therefore all 12

were assigned to the same cluster with high catchability on

the 01-03KK surveys and low catchability in others. The

remaining three clusters were of similar size, ranging from

15 to 19 individuals. Two of these clusters comprised

individuals that were identified by only one survey: 02LT

(15 individuals) and 02AH (19 individuals), which

generally had negative associations with other surveys.

Finally, a cluster of 16 individuals was defined by identi-

fications primarily in the 01LT survey, with all the indi-

viduals identified in this survey. However, there was some

overlap of individuals with the 02EA, 03FP and 03LT

surveys, corresponding to the positive (but weak associa-

tions) between 01LT and these surveys.

Without the cluster by survey interactions and covari-

ance between surveys, the models with cluster effects (Mh

and Mah) produced only slightly higher abundance esti-

mates than the corresponding simpler formulations (M0 and

Ma, respectively; Table 2). This heterogeneity effect was

small because of the limited support for more than one

cluster in these formulations. A larger effect was seen

through the addition of survey effects, which resulted in

decreases in abundance estimates (M0 vs. Ma: Mh vs. Mah).

However, an even larger decrease in estimates was

achieved when the constraint of parallel survey effects

across clusters was removed through the addition of cluster

by survey interactions that allowed differential coverage of

specific clusters by specific surveys. Because negative

associations comprised the majority, and the strongest, of

the significant associations between surveys, the Mahk

model resulted in the lowest estimate for the abundance of

distinctively marked individuals (median = 275, 95%

probability interval = 210–372). Note that this estimate

was greater than the n = 154 individuals that were actually

observed, and less than the M = 500 potentially unob-

served individuals that were considered, with an estimated

n0 = 121 (95% probability interval = 56–218) unobserved

distinctive individuals.

Table 3 The off-diagonal elements of the covariance matrix R, showing the associations between pairs of surveys in terms of their similarity in

coverage of specific clusters

01LT 01KK 01EA 02AH 02LT 02MA 02MF 02KK 02EA 02TX 03FP 03LT 03KK 03EA

01LT -8 4 3 -15 5 -4 -11 11 8 15 11 -13 -3

01KK -15 -1 -8 -4 -22 15 -22 -26 35 -27 19 -37

01EA -8 14 2 35 -13 23 33 -51 36 -17 51

02AH -8 1 -37 -4 -4 -24 28 -29 -3 -36

02LT -2 40 -3 13 26 -78 24 -4 59

02MA 1 -5 4 4 -3 4 -5 4

02MF -11 39 83 -125 87 -19 127

02KK -20 -19 23 -22 20 -25

02EA 41 -58 45 -27 62

02TX -99 77 -27 105

03FP -100 34 -178

03LT -31 111

03KK -39

03EA

The posterior median of each covariance is displayed and denoted in bold if the 95% probability intervals of the distribution did not encompass

zero (no association)
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There were some individuals that were judged not to be

distinctive, even from a high-quality photograph that dis-

played the dorsal fin and saddle patch in good clarity

(Fig. 2). These were typically younger individuals that had

not yet acquired a dorsal fin notch or two types of sec-

ondary markings. We estimated that the average proportion

p of individuals with distinctive markings per encounter

was 0.80 (95% probability interval = 0.67–0.91), and

therefore the abundance estimate for distinctive individuals

was rescaled to an overall abundance estimate of P = 345

(95% probability interval = 255–487) (Fig. 4).

Discussion

A recurring theme in mark-recapture studies is the need to

account for heterogeneity in capture probabilities. It is well

established that behavioral differences among individuals

are likely to produce variable probabilities of capture, and

failure to account for this heterogeneity can lead to biased

population estimates (Carothers 1973a, b; Otis et al. 1978).

Our analyses demonstrated that important variation in

identification probabilities resulted from the use of photo-

identification data from killer whales encountered during

opportunistic and non-systematic surveys that induced non-

equal coverage of a large survey area. Combined with

differential ranging patterns of different killer whale

groups, this led to the situation where clusters or ‘‘sub-

populations’’ were differentially covered by different sur-

veys. Rather than pooling surveys into mark and recapture

samples to reduce heterogeneity (Calambokidis and

Barlow 2004), we chose instead to explicitly model both

heterogeneity and dependence to learn from all the infor-

mation available in the overlap of individuals between

surveys. We expect that our approach will be of use to

other mark-recapture studies involving multiple observa-

tional surveys over large study areas, particularly for social

cetacean species living in large stable groupings (Mann

et al. 2000) that will result in clustered heterogeneity in

capture probabilities.

We modeled the clustered heterogeneity through the use

of Bayesian mixture models, where the underlying density

of individual identification probabilities was approximated

by a mixture of distributions (West 1992), defining clusters

of individuals with similar identification histories. Addi-

tionally, dependencies between surveys that were differ-

entially associated in space and time were estimated using

a hierarchical formulation for cluster-by-survey interaction

terms (Fienberg et al. 1999), where the covariance matrix

provided an estimate of the association between each pair

of surveys in terms of the clusters that they covered. A key

feature of our approach was that we did not specify the

number of clusters, but instead estimated the number of

non-empty mixtures from a ceiling value using a Dirichlet

Process Prior (Escobar and West 1995). Model fitting was

accomplished using MCMC sampling within a Bayesian

statistical framework, allowing uncertainty in mixture

allocation to be propagated into a full probability distri-

bution for population size that effectively communicated

both the extent and the shape of the uncertainty (e.g., Wade

2000).

The resulting abundance estimate of 345 transient killer

whales (95% probability interval = 255–487) represents a

key input parameter for ecosystem models (Guenette et al.

2006). For example, energetic calculations have suggested

that fewer than 40 killer whales could have caused the

recent Steller sea lion decline in the Aleutian Islands, and a

group of five individuals could have accounted for the

decline in sea otters, if their predation was focused entirely

on these species (Williams et al. 2004). Even the lower

95% probability bound of our estimate was considerably

higher than this. However, our estimates of covariance

between pairs of surveys suggest spatial segregation and

differential site fidelity of whales across the study area: key

features of population structure that need to be considered

when evaluating the intensity and distribution of predation

pressure.

We estimated significant positive associations between

the three surveys in the western Gulf of Alaska (01-03KK,

strata 1, Fig. 1) and negative associations between these

surveys and those in the Aleutian Islands, with no overlap

of individuals. Similar structure may exist between the

eastern and central Aleutian Islands, as none of the indi-

viduals documented around the central Aleutians (strata

13:16, Fig. 1) have been sighted in the relatively large

number of encounters in the adjacent eastern Aleutian

Islands (strata 9–12). However, the absence of focused

survey effort and the low sample size of encounters in the
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Fig. 4 Posterior probability distribution (bars) and prior probability

distribution (broken line) for the overall abundance, P, of killer

whales, estimated using the best-fitting Mahk model
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central Aleutians constrained our power to identify struc-

tural boundaries between these areas.

In contrast, we recorded the largest number of killer

whale encounters in the eastern Aleutians area. Although

this aggregation of sightings was partly a function of

greater survey coverage, a high density of sightings in this

area was also reported from randomized line-transect sur-

veys (Zerbini et al. 2007). The strong positive associations

that we estimated between surveys with encounters in the

eastern Aleutians indicated the repeated re-identification of

individuals, implying a relatively high level of site fidelity

of whales across different surveys and years. This apparent

hot spot in distribution is likely linked to the availability of

prey. The Aleutian Passes, such as Unimak and Samalga,

are highly productive regions that provide important for-

aging areas and movement corridors for both cetaceans and

pinnipeds (Sinclair et al. 2005). Recent observations during

the summer months have documented predation by killer

whales on a number of pinniped and cetacean species in

this area (Matkin et al. 2007), with the highest number of

observations involving predation on northern fur seals

(Callorhinus ursinus) that are increasing in number in the

area due to the growth of the Bogoslof rookery (Towell

et al. 2006). This area also has a high concentration of

Steller sea lions, which have been increasing in number

since at least 2000 (Fritz and Stinchcomb 2005).

Interestingly, the strongest negative association was

estimated between the 03FP (strata 10,12) and 03EA

(stratum 11) surveys, which were geographically adjacent

in the eastern Aleutians. There were also strong negative

associations between the 03FP survey and all other eastern

Aleutian surveys. The 03FP survey was unique in occur-

ring earlier in the year (May 2003) and documented a large

aggregation of killer whales that were feeding on young

gray whales migrating northwards into the Bering Sea

(Barrett-Lennard et al. 2010). In contrast, the other eastern

Aleutian surveys involved encounters from June to August

after most of the gray whales had moved through the area.

The majority (52 out of 59) of the individuals photo-

graphed during the 03FP survey were not identified on any

other survey, suggesting that most of the animals in this

late-spring aggregation did not remain in the area in the

summer months, possibly following migrating gray whales

northwards. This underscores the fact that our abundance

estimate refers to the number of killer whales that used the

study area at some time during the study period and does

not imply that all the animals remained within the area for

the entire duration of the study.

Using distance-sampling data collected on three of the

same surveys used here (01LT, 02LT, 03LT), it was esti-

mated that only 251 (95% CI = 97–644) transients were

present in the same study area at the time of the line-

transect surveys in July and August (Zerbini et al. 2007).

This instantaneous estimate of density differs in interpre-

tation from our mark-recapture assumption of the number

of distinct animals using the area during the full study

duration. Although the line-transect estimate is somewhat

less precise than the mark-recapture estimate (LT 95%

Confidence Intervals = 97–644; MR 95% probability

intervals = 255–487), it is clear that much of the differ-

ence in estimates could be due to animals that were only

encountered in the 03FP spring survey of the mark-recap-

ture analysis and were therefore likely not present in the

July–August line-transect sampling period. The compli-

mentary inference obtained by comparing these different

estimates of abundance will have to be considered when

making energetic calculations of the potential impact of

killer whale predation on prey populations. Specifically, it

is clear that not all the individuals remain in this area at all

times, resulting in temporal and spatial variation in the

predation pressure on coastal marine mammals.
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